姓名:杨胜利

职称: 教授  博士生导师 

性别:男

毕业院校:兰州大学资源环境学院

学历:博士研究生

学位:博士

在职信息:在职

所在单位:兰州大学资源环境学院

入职时间:2014年

办公地点:

电子邮箱:shlyang@lzu.edu.cn

学习经历

1994.09-1998.06  兰州大学地理科学系  学士
1998.09-2001.06  兰州大学资源环境学院  自然地理学 硕士
2001.09-2004.06  兰州大学资源环境学院  自然地理学 博士

研究方向

地表粉尘与干旱环境;释光测年与环境变化;全球变化与古气候;青藏高原黄土与环境

工作经历

2014.04 — 至今   兰州大学 资源环境学院 
2009.09-2014.03  南京师范大学 地理科学学院
2004.07-2009.08  中国科学院 青藏高原研究所

主讲课程

本科生课程:《自然灾害学》、《全球环境变化》、《中国与世界地理》、《环境政策分析》
研究生课程:《环境灾害学》、《第四纪地质学研究进展》

学术兼职

中国地理学会地理测年技术分会 委员(2022-)
中国地理学会地理测年技术工作组委员(2020-2021)
教育部学位中心学位论文评审人
国家自然科学基金通讯评审人

研究成果

成果1:通过系统的物源分析和年代学分析表明青藏高原黄土主要为风成成因,其物源主要来自于青藏高原内部;高原黄土的出现指示了大气环流的改变和高原内部干旱化。
成果2:通过磁性地层学、氧同位素和环境指标综合分析,揭示了四川盆地广泛分布的成都粘土为风成成因,主要开始堆积于中更新世,记录了约50万年的干旱化增强事件。
成果3:通过系统的光释光测年建立了详细的青藏高原黄土-古土壤年代序列,揭示了晚第四纪以来高原黄土粉尘堆积过程、环境演化历史及其控制因素。

获得荣誉

2023年度 中国地理学会“中国地理科学十大研究进展”
2022年度 兰州大学大型仪器共享管理优秀个人
2021年度 兰州大学大型仪器共享管理优秀个人
2018年 甘肃省教学成果一等奖,第三
2004年 甘肃省科技进步二等奖,第五
2015年 兰州大学教学成果奖一等奖,第三

在研项目

[1]	国家自然科学基金面上项目:青藏高原东部古土壤S1记录的末次间冰期高原环境变化及其驱动机制,2023-2026,主持。
[2]	国家自然科学基金面上项目:青藏高原东部风成黄土多技术源区示踪研究,2019-2022,主持。
[3]	第二次青藏高原综合科学考察研究项目:粉尘气溶胶及其气候环境效应(2019QZKK0602), 2019-2024,参加。
[4]	国家自然科学基金委重点项目:青藏高原丹尼索瓦人的旧石器文化和环境适应研究(42130502),2022-2025,参加。
[5]	中科院先导专项A联合攻关项目:高原人-环境相互作用的生态环境影响与调控对策,子课题(XD2009000003),2018-2022,参加。

发表论文

[1]	Liu, L., Yang, S., Li, P., Zhang, J., Li, R., Li, D., Xu, X., Luo, Y. and Yang, X., 2025. First investigation of the luminescence dating of loess in the eastern Tibetan Plateau using K-feldspar MAR MET-pIRIR protocol. Quaternary Geochronology, 86: 101648.
[2]	Li, P., Yang, S., Luo, Y., Liu, L., Zhang, Y., Liu, W., Zhang, J., Xu, X., Wen, C. and Li, Q., 2025. Indian summer monsoon history during the last glacial cycle revealed by a loess sequence from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology: 112593
[3]	Yang, S., Liu, L., Li, D., Li, R., Liu, W., Luo, Y., Li, P., Zan, J., Fang, X., 2025. New luminescence chronology of a loess-paleosol sequence at Jinchuan and its implications for aeolian deposition processes in the Tibetan Plateau. Geomorphology, 478, 109730.
[4]	Yang, S., Liu, X., Zan, J., Li, P., Xu, X., Li, D., Li, Q., Liu, L., Wen, C. and Fang, X., 2024. Multi-method luminescence dating of young aeolian dunes in the central Tibetan plateau. Quaternary Geochronology, 83: 101595.
[5]	Wang, H., Yang, J., Gao, F., Wang, S., Wang, Z., Qu, W., Li, J., Liu, X., Zhang, C., Wang, L., Fan, Y., Yang, S. and Xia, D., 2024. Middle to late Holocene climate change in the monsoon-dominated southeastern Tibetan Plateau and its relationship with human activity. Palaeogeography, Palaeoclimatology, Palaeoecology, 645: 112209. 
[6]	Luo, Y., Yang, S., Wen, C., Xu, X., Xiao, X., Zhou, J., Yang, X., Li, R., Zhang, J. and Fang, X., 2024. Anthropogenic effects on soils in the eastern Tibetan Plateau revealed by geochemical elemental characteristics. Environmental Research, 252: 118794.
[7]	Chen, Z., Li, Q., Li, P., Zhou, J., Su, Y., Liu, W., Luo, Y., Wen, C., Xu, X. and Yang, S., 2024. High-resolution climate change during the Marine Isotope Stage 3 revealed by Zhouqu loess in the eastern margin of the Tibetan Plateau. Progress in Physical Geography: Earth and Environment: 03091333241236394..
[8]	Yang, J., Wang, H., Gao, F., Wang, Z., Wang, S., Fan, Y., Li, T., Liu, X., Qu, W., Li, J., Zhang, Y., Chen, Z., Liu, L., Ayyamperumal, R., Yang, S. and Xia, D., 2024. Holocene forcing of aeolian dust activity over the Tibetan Plateau and its surroundings. Global and Planetary Change, 235: 104400.
[9]	徐雪超,刘丽,杨胜利,等. 阿坝盆地黄土记录的青藏高原东部末次冰期环境变化. 海洋地质与第四纪地质,2024,44(4): 168-179.
[10]	Yang, S., Zhou, J., Chen, Z., Li, P., Wen, C., Xu, X., Li, Q., 2023. Westerly Variations in the Eastern Tibetan Plateau since the Last Interglacial Revealed by the Grain-Size Records of the Ganzi Loess. Atmosphere 14, 238.
[11]	Ling, Z., Yang, J., Wang, Z., Jin, J., Xia, D., Yang, S., Wang, X., Chen, F., 2023. Spatiotemporal differences in Holocene climate change in the Yarlung Tsangpo catchment, southern Tibetan Plateau, reconstructed from two sandy loess sequences. Palaeogeography, Palaeoclimatology, Palaeoecology 616, 111473.
[12]	Yang, S., Chen, Z., Chen, H., Luo, Y., Liu, L., Liu, X., Li, Q., Zhou, J., Li, P., 2022. Magnetic Properties of the Ganzi Loess and Their Implications for Precipitation History in the Eastern Tibetan Plateau Since the Last Interglacial. Paleoceanography and Paleoclimatology 37(2), e2021PA004322.
[13]	Chen, Z., Yang, S., Luo, Y., Chen, H., Liu, L., Liu, X., Wang, S., Yang, J., Tian, W., Xia, D., 2022. HIRM variation in the Ganzi loess of the eastern Tibetan Plateau since the last interglacial period and its paleotemperature implications for the source region. Gondwana Research 101, 233-242.
[14]	Liu, L., Yang, S., Liu, X., Cheng, T., Li, P., Zhou, J., Chen, Z., Luo, Y., 2022. Effects of the size of the test dose on the SAR protocol for quartz optically stimulated luminescence dating of loess in the eastern Tibetan Plateau. Quaternary Geochronology 72, 101365.
[15]	Liu, L., Yang, S.L., Liu, X.J., Li, P.S., Wang, H.Y., Zhou, J.T., 2022. Variation of luminescence sensitivity of quartz grains from loess in eastern Tibetan Plateau and its provenance significance. Frontiers in Earth Science 10.
[16]	Ling, Z.Y., Yang, S.L., Xia, D.S., Wang, X., Chen, F.H., 2022. Source of the aeolian sediments in the Yarlung Tsangpo valley and its potential dust contribution to adjacent oceans. Earth Surface Processes and Landforms 47(7), 1860-1871.
[17]	Li, Z., Wang, F., Luo, C., Liu, C., Wang, X., Yang, S., Ayyamperumal, R., Zhang, J., Li, B., and Fan, Y., 2022. Enhanced drying of the Tengger desert, northwest margin of East Asian summer monsoon during warming interglacials after 500 ka. Quaternary Science Reviews 293, 107735.
[18]	Yang, S., Liu, L., Chen, H., Tang, G., Luo, Y., Liu, N., Cheng, T., Li, D., 2021. Variability and environmental significance of organic carbon isotopes in Ganzi loess since the last interglacial on the eastern Tibetan Plateau. CATENA 196.
[19]	Yang, S., Liu, N., Li, D., Cheng, T., Liu, W., Li, S., Chen, H., Liu, L., Luo, Y., 2021. Quartz OSL chronology of the loess deposits in the Western Qinling Mountains, China, and their palaeoenvironmental implications since the Last Glacial period. BOREAS 50(1), 294-307.
[20]	Yang, S., Liu, X., Cheng, T., Luo, Y., Li, Q., Liu, L., Chen, Z., 2021. Stepwise Weakening of Aeolian Activities During the Holocene in the Gannan Region, Eastern Tibetan Plateau. Frontiers in Earth Science 9.
[21]	Yang, S., Luo, Y., Li, Q., Liu, W., Chen, Z., Liu, L., Liu, X., 2021. Comparisons of topsoil geochemical elements from Northwest China and eastern Tibetan Plateau identify the plateau interior as Tibetan dust source. Science of The Total Environment 798.
[22]	Liu, L., Yang, S., Cheng, T., Liu, X., Luo, Y., Liu, N., Chen, H., Chen, Z., Li, P., Liu, W., 2021. Chronology and dust mass accumulation history of the Wenchuan loess on eastern Tibetan Plateau since the last glacial. Aeolian Research. 53, 100748.
[23]	Cheng, T., Zhang, D., Smith, G.M., Joeris, O., Wang, J., Yang, S., Xia, H., Shen, X., Li, Q., Chen, X., Lin, D., Han, Y., Liu, Y., Qiang, M., Li, B., Chen, F., 2021. Hominin occupation of the Tibetan Plateau during the Last Interglacial Complex. Quaternary Science Reviews. 265.
[24]	Ning, W.-X., Zan, J.-B., Yang, S.-L., Fang, X.-M., Shen, M.-M., Kang, J., et al.,2021. A combined rock magnetic and meteorological investigation of the precipitation boundary across the Tibetan Plateau. Geophysical Research Letters, 48, e2021GL094808. https://doi.org/10.1029/2021GL094808
[25]	Song, Y., Yang, S., Nie, J., Zan, J., Song, C., 2021. Quaternary paleoclimate and paleoenvironmental changes in Central Asia. Palaeogeography Palaeoclimatology Palaeoecology 568.
[26]	Wu, D., Zhang, C., Wang, T., Liu, L., Zhang, X., Yuan, Z., Yang, S., Chen, F., 2021. East-west asymmetry in the distribution of rainfall in the Chinese Loess Plateau during the Holocene. CATENA 207.
[27]	李冬雪, 刘楠楠, 杨胜利, 刘维明, 成婷, 刘丽, 罗元龙, 2021. 石英标准生长曲线在青藏高原东缘黄土光释光测年中的应用. 第四纪研究 41(1), 111-122.
[28]	Yang, S., Li, D., Liu, N., Zan, J., Liu, W., Kang, J., Murodov, A., Fang, X., 2020. Quartz optically stimulated luminescence dating of loess in Tajikistan and its paleoclimatic implications for arid Central Asia since the Lateglacial. Palaeogeography Palaeoclimatology Palaeoecology 556.
[29]	Fang, X., An, Z., Clemens, S.C., Zan, J., Shi, Z., Yang, S., Han, W., 2020. The 3.6-Ma aridity and westerlies history over midlatitude Asia linked with global climatic cooling. Proceedings of the National Academy of Sciences of the United States of America 117(40), 24729-24734.
[30]	Ling, Z., Yang, S., Wang, X., Wang, J., Xia, D., Chen, F., 2020. Spatial-temporal differentiation of eolian sediments in the Yarlung Tsangpo catchment, Tibetan Plateau, and response to global climate change since the Last Glaciation. Geomorphology 357.
[31]	Miao, Y., Song, Y., Li, Y., Yang, S., Li, Y., Zhao, Y., Zeng, M., 2020. Late Pleistocene fire in the Ili Basin, Central Asia, and its potential links to paleoclimate change and human activities. Palaeogeography Palaeoclimatology Palaeoecology 547.
[32]	Zhao, Z., Granger, D., Zhang, M., Kong, X., Yang, S., Chen, Y., Hu, E., 2016. A test of the isochron burial dating method on fluvial gravels within the Pulu volcanic sequence, West Kunlun Mountains, China. Quaternary Geochronology. 34, 75-80.
[33]	Miao, Y., Fang, X., Song, C., Yan, X., Zhang, P., Meng, Q., Li, F., Wu, F., Yang, S., Kang, S., Wang, Y., 2016. Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records. Quaternary Science Reviews. 139, 53-66.
[34]	Zan, J., Fang, X., Yang, S., Yan, M., 2015. Bulk particle size distribution and magnetic properties of particle-sized fractions from loess and paleosol samples in Central Asia. Geochem Geophy Geosy 16(1), 101-111.
[35]	Yang S.L., Forman, S.L., Song Y.G., Pierson J., Mazzocco J., Li, X.X., Shi Z.T., Fang X.M.,2014. Evaluating OSL-SAR protocols for dating quartz grains from the loess in Ili Basin, Central Asia. Quaternary Geochronology 20, 78-88.
[36]	Miao, Y., Herrmann, M., Wu, F., Yan, X., Yang, S., 2012. What controlled Mid-Late Miocene long-term aridification in Central Asia? - Global cooling or Tibetan Plateau uplift: A review. Earth-Science Reviews 112(3-4), 155-172.
[37]	Han, W., Fang, X., Yang, S., King, J., 2010. Differences between East Asian and Indian monsoon climate records during MIS3 attributed to differences in their driving mechanisms: Evidence from the loess record in the Sichuan basin, southwestern China and other continental and marine climate records. Quaternary International 218(1-2), 94-103.
[38]	Yang, S., Fang, X., Shi, Z., Lehmkuhl, F., Song, C., Han, Y., Han, W., 2010. Timing and provenance of loess in the Sichuan Basin, southwestern China. Palaeogeography Palaeoclimatology Palaeoecology 292(1-2), 144-154.
[39]	Yang, S., Fang, X., Yan, M., Shi, Z., Song, C., Han, Y., 2010. Grain size profiles in the Chengdu Clay, eastern margin of the Tibetan Plateau: Implications for significant drying of Asia since similar to 500 ka BP. Journal of Asian Earth Science. 38(1-2), 57-64.
[40]	Zan, J., X. Fang, S. Yang, J. Nie, and X. Li (2010), A rock magnetic study of loess from the West Kunlun Mountains, Journal of Geophysical Research: Solid Earth, 115(B10), doi:https://doi.org/10.1029/2009JB007184.

扫一扫
关注公众号