姓名:牟翠翠
职称: 教授  博士生导师  硕士生导师 
性别:女
毕业院校:中国科学院寒区旱区环境与工程研究所
学历:研究生
学位:博士
在职信息:在职
所在单位:地球系统科学研究所
入职时间:2014年7月
办公地点:观云楼1412
电子邮箱:mucc@lzu.edu.cn
学习经历
2004-2008,青岛科技大学,理学学士 2008-2011,上海大学,理学硕士 2012,美国科罗拉多地质调查局(USGS),联合培养 2011-2014,中国科学院寒区旱区环境与工程研究所,理学博士
研究方向
多年冻土碳氮生物地球化学过程,冰冻圈科学与可持续发展
工作经历
2014-至今:兰州大学资源环境学院 曾在美国科罗拉多大学、阿拉斯加大学访学
主讲课程
本科生课程:《冰冻圈科学概论》《地球科学概论》 研究生课程:《气候变化科学概论》《冰冻圈科学前沿进展》
学术兼职
甘肃省祁连山冻土与生态环境野外科学观测研究站站长 兰州大学冰冻圈研究中心主任 政府间气候变化专门委员会(IPCC)第六次评估报告贡献作者 北极理事会的《北极监测与评估工作组报告》(AMAP)贡献作者 《Science Bulletin》特邀编委 《Journal of Environmental Quality》副主编 《Frontiers in Environmental Science》《Applied Geochemistry》客座编辑 《中国大百科全书》第三版冰冻圈科学专题分支副主编 《冰川冻土》和《寒旱区科学》编委 中国冰冻圈科学学会理事会理事、教育工作委员会主任 中国地理学会冻土与寒区工程专业委员会副主任
研究成果
主要从事多年冻土与碳循环研究,创建了祁连山(海拔3600-4500 m)气候-植被-冻土-碳循环综合监测网,建立了甘肃省祁连山冻土与生态环境野外科学观测研究站(站长),在逐步升温碳分解机理、快速融化碳释放调控、陆-水系统碳动态等方面取得了一系列研究成果。在国内外期刊上发表论文100余篇,其中SCI/SSCI收录80余篇,包括第一/通讯作者在Nat Commun、Glob Change Biol、Earth-Sci Rev、ISPRS J Photogramm Remote Sens、Global Biogeochem Cycles、Earths Future、Geophys Res Lett等重要期刊上发表论文。
获得荣誉
2020年度教育部“长江学者奖励计划”青年学者 2021年第十届甘肃青年科技奖 2021年第十三届青藏高原青年科技奖 2021年甘肃省领军人才(第二层次) 2023年甘肃省巾帼建功标兵荣誉称号 2022年兰州大学“国华青年英才奖” 2017年国际冰冻圈科学协会(IACS)颁发的“最佳青年报告奖” 2017年“施雅风冰冻圈与环境基金”青年科学家奖
在研项目
1. 国家自然科学基金委区域创新发展联合重点项目:祁连山多年冻土变化及碳汇效应对气候变化的响应,项目负责人,2026/1-2029/12 2. 国家重点研发计划青年科学家项目:青藏高原多年冻土退化对泥炭地甲烷排放的影响(2024YFF0810900),项目负责人,2024/12-2027/11 3. 国家自然科学基金委面上项目:青藏高原季节性热融湖塘甲烷排放及微生物作用研究(42371132),项目负责人,2024/01-2027/12 4. 甘肃省基础研究创新群体项目:青藏高原典型多年冻土区土壤碳库对全球变化的响应及机理(23JRRA1171),项目负责人,2023/07-2026/06 5. 国家重点研发计划项目:北极快速变化的机理、影响及其气候效应研究(2019YFA0607003),课题负责人,2019/11-2024/10 6. 国家自然科学基金委面上项目:青藏高原中部热融湖塘温室气体排放季节变化规律及机理研究(41871050),项目负责人,2019/01-2022/12 7. 第二次青藏高原综合科学考察研究,任务六专题五:跨境污染物调查与环境安全(2019QZKK0605),子子专题负责人,2019/11-2022/10 8. 国家自然科学基金委青年项目:热融滑塌对高寒草甸区土壤有机碳分解及温室气体排放的影响-以俄博岭多年冻土区为例(41601063),项目负责人,2017/1-2019/12
发表论文
[1] Wei, Y.G., Mu, C.C.*, Chen, D.L.*, et al. 2026. Global warming driving increased winter CO2 emissions in the Northern Hemisphere permafrost region. The Innovation Geoscience, 4(1): 100185. [2] Liu, H.B., Mu, M., Mu, C.C.*, et al. 2026. Aridity controls on the dominance of soil mineral-associated and particulate organic carbon in the Qinghai-Tibet Plateau. Global and Planetary Change, 256, 105145. [3] Mu, C.C.*, et al. 2025. Recent intensified riverine CO2 emission across the Northern Hemisphere permafrost region. Nature Communications, 16: 3616. [4] Mu, C. C.*, et al. 2025. Methane emissions from thermokarst lakes must emphasize the ice-melting impact on the Tibetan Plateau. Nature Communications, 16(1): 2404. [5] Mu, M., Mu, C. C.*, et al. 2025. Thermokarst lake drainage halves the temperature sensitivity of CH4 release on the Qinghai-Tibet Plateau. Nature Communications, 16(1): 1992. [6] Fan, C. Y., Mu, C. C.*, Liu, L.*, et al. 2025. Time-Series models for ground subsidence and heave over permafrost in InSAR Processing: A comprehensive assessment and new improvement. ISPRS Journal of Photogrammetry and Remote Sensing, 222:167-185. [7] Fan, C.Y., ..., Mu, C.C.*, et al. 2025. Pronounced Underestimation of Surface Deformation Due To Unwrapping Errors Over Tibetan Plateau Permafrost by Sentinel-1 InSAR: Identification and Correction. Journal of Geophysical Research: Earth Surface, 130, e2024JF007854. [8] Mu, C.C.*, et al. 2024. Impacts of increasing land-ocean interactions on carbon cycles in the Arctic. Earth Critical Zone, 1, 100010. [9] Peng, X.Q., ..., Mu, C.C.*, et al. 2024. The thermal effect of snow cover on ground surface temperature in the Northern Hemisphere. Environmental Research Letters, 19, 044015. [10] Xia, Z.X., Liu, L.*, Mu, C.C.*, et al. 2024. Widespread and Rapid Activities of Retrogressive Thaw Slumps on the Qinghai-Tibet Plateau From 2016 to 2022. Geophysical Research Letters, 51, e2024GL109616. [11] Mu, M., Mu, C.C.*, et al. 2024. Decline of CO2 Release During the Evolution of the Thaw Slump on the Northern Qinghai‐Tibet Plateau. Journal of Geophysical Research: Biogeosciences, 129: e2024JG008162. [12] Mu, M., Mu, C.C.*, et al. 2024. Topographic Drivers of Permafrost Organic Carbon Accumulation on the Northern Qinghai–Tibet Plateau. Permafrost and Periglacial Processes, 35: 373-383. [13] Mu, C.C.*, Mo, X.X, et al. 2023. Ecosystem CO2 exchange and its economic implications in northern permafrost regions in the 21st century. Global Biogeochemical Cycles, 37, e2023GB007750. [14] Zhao, W.Y., Mu, C.C.*, et al. 2023. Spatial and temporal variability in snow density across the Northern Hemisphere. Catena, 232, 107445. [15] Peng, X.Q., ..., Mu, C.C.*, et al. 2023. Active layer thickness and permafrost area projections for the 21st century. Earth's Future, 11: e2023EF003573. [16] Zhang, G.F., Mu, C.C.*, et al. 2023. Elevation dependency of future degradation of permafrost over the Qinghai-Tibet Plateau. Environmental Research Letters, 18, 075005. [17] Mu, M., Mu, C.C.*, et al. 2023. Carbon loss and emissions within a permafrost collapse chronosequence. Catena, 231, 107291. [18] Mu, C.C., Mu, M., et al. 2023. High carbon emissions from thermokarst lakes and their determinants in the Tibet Plateau. Global Change Biology, 29(10), 2732-2745. [19] Mu, M, Mu, C.C.*, et al. 2023. Thermokarst lake changes along the Qinghai-Tibet Highway during 1991–2020. Geomorphology, 441: 108895. [20] Peng, X.Q., ..., Mu, C.C *. 2022. An integrated index of cryospheric change in the Northern Hemisphere. Global and Planetary Change, 218, 103984. [21] Peng, X.Q., Zhang, T.J.*, ..., Mu, C.C.* 2021. A Holistic assessment of 1979–2016 global cryospheric extent. Earth's Future, 9, e2020EF001969. [22] Li, Z.L., Mu, C.C.*, et al. 2021. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002-2017. Advances in Climate Change Research, 12, 475-481. [23] Mu, C.C., et al. 2020. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 211, 103433. [24] Mu, C.C.*, et al. 2020. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides, 17, 1051–1062. [25] Mu, C.C.*, et al. 2020. Organic carbon stabilized by iron during slump deformation on the Qinghai-Tibetan Plateau. Catena, 187, 104282. [26] Mu, C.C.*, et al. 2020. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 708, 135127. [27] Mu, C.C.*, et al. 2019. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Research, 161, 54-60. [28] Mu, C.C., et al. 2018. Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau. Scientific Reports, 8, 4205. [29] Mu, C.C., et al. 2018. Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 50: 1, e1447192. [30] Mu, C.C., et al. 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 9389-9399. [31] Mu, C.C., et al. 2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 8945-8952. [32] Mu, C.C., et al. 2017. Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 247, 252-259. [33] Mu, C.C., et al. 2017. Relict mountain permafrost area (Loess Plateau, China) exhibits high ecosystem respiration rates and accelerating rates in response to warming. Journal of Geophysical Research: Biogeosciences, 122, 2580-2592. [34] Mu, C.C., et al. 2016. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau. Journal of Limnology, 75, 313-319. [35] Mu, C.C., et al. 2016. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena, 141, 85-91. [36] Mu, C.C., et al. 2016. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 121, 1781-1791. [37] Mu, C.C., et al. 2016. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai‐Tibet Plateau. European Journal of Soil Science, 67, 773-781. [38] Mu, C.C., et al. 2016. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai‐Tibet Plateau. Geophysical Research Letters, 43, 10286-10294. [39] Mu, C.C., et al. 2015. Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. The Cryosphere, 9 (2), 479-486. [40] Mu, C.C., et al. 2015. Carbon and nitrogen properties of permafrost over the eboling mountain in the Upper Reach of Heihe River Basin, Northwestern China. Arctic, Antarctic, and Alpine Research, 47, 203-211. [41] Mu, C.C., et al. 2014. Carbon and geochemical properties of cryosols on the North Slope of Alaska. Cold Regions Science and Technology, 100, 59-67. [42] Mu, C.C., et al. 2014. Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China. Quaternary International, 321, 71-77.
出版著作
《冻土环境生态学》、《冰冻圈化学》、《青藏高原东北部黄河流域水碳过程与人类活动》




