Home> Faculty

Name:Cuicui Mu

Title: Professor 

Gender:female

Graduate College:Northwest Institute of the Eco-Environment and Resources, Chinese Academy of Sciences

Education:

Academic degree:

On-the-job information:Incumbency

Unit:

Initiation time:

Office location:

Mail box:mucc@lzu.edu.cn

Learning Experience

2014:  PhD, Physical Geography, University of Chinese Academy of Sciences
2011:  M.S. in Environmental Science, Shanghai University
2008:  B.S. in Environmental Science, Qingdao University of Science & Technology

Research Direction

Climate change; cryosphere; ecosystem carbon cycle

Work Experience

2014.07-2017.07: Assistant Professor, Key laboratory of west China’s Environmental System (Ministry of Education), College of Earth and Environment Sciences, Lanzhou University.
2017.12-2018.12: Visiting Scholar, University of Colorado, Boulder
2017.07- present: Professor, Key laboratory of west China’s Environmental System (Ministry of Education), College of Earth and Environment Sciences, Lanzhou University.

Courses

Cryosphere sciences,Professional English in Earth System Science

Part-time Academic Job

The contributing author of sixth assessment report of the Intergovernmental Panel on Climate Change (IPCC), and obtained the “Best Oral Presentation by an Early Career Scientist” from the International Association of Cryospheric Sciences (IACS) and “Young Scientist Award” of Shi Yafeng Cryosphere and Environmental Foundation. 

Research Findings

National Natural Science Foundation of China (Grant No. 41871050, No. 41601063), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20100313; XDA20100103), the Open Foundations of the State Key Laboratory of Cryospheric Science (Grant No. SKLCS-OP-2018-05), Open Foundations of the State Key Laboratory of Frozen Soil Engineering (Grant No. SKLFSE201705).

In-progress Projects

The National Key R&D Program of China (2019YFA0607003);
the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20100313);
the second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0605);
the National Natural Science Foundation of China (Grant No. 41871050);
the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20100313; XDA20100103);
the Open Foundations of the State Key Laboratory of Frozen Soil Engineering (Grant No. SKLFSE201705)..

Publications

[1] Mu, C.C., Shang, J.G., Zhang, T.J., Fan, C.Y., Wang, S.F., Peng, X.Q., Zhong, W., Zhang, F., Mu, M., Jia, L. 2020. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides, DOI 10.1007/s10346-020-01344-3.
[2] Mu, C.C., Zhang, F., Mu, M., Chen, X., Li, Z.L., Zhang, T.J. 2020. Organic carbon stabilized by iron during slump deformation on the Qinghai-Tibetan Plateau. Catena, 187, 104282, https://doi.org/10.1016/j.catena.2019.104282.
[3] Mu, C.C., Schuster, P.F., Abbott, B.W., Kang S.K., Guo, J.M., Sun, S.W., Wu, Q.B., Zhang, T.J. 2019. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2019.135127.
[4] Mu, C.C., Zhang, F., Chen, X., Ge, SM., Mu, M., Jia, L., Wu, QB., Zhang, T.J. 2019. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Research, 161, 54-60.
[5] Mu, C., Zhang, T., Abbott, B. W., Wang, K., Ge, S., Sayedi, S. S., et al. (2019). Organic carbon pools in the subsea permafrost domain since the Last Glacial Maximum. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083049.
[6] Mu, C.C., Li, L.L., Wu, X.D., Zhang, F., Jia, L., Zhao, Q., Zhang, T.J., 2018. Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau. Scientific Reports, 8: 4205, DOI:10.1038/s41598-018-22530-3.
[7] Mu, C.C., Li, L.L., Zhang, F., Li, Y.X., Xiao, X.X., Zhao, Q., Zhang, T.J., 2018. Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 50: 1, e1447192. 
[8] Mu, C.C., Abbott, B.W., Wu, X.D., Zhao, Q., Wang, H.J., Su, H., Wang, S.F., Gao, T.G., Peng, X.Q., Zhang, T.J., 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 9389-9399. 
[9] Mu, C.C., Abbott, B.W., Zhao, Q., Su, H., Wang, S.F., Wu, Q.B., Zhang, T.J., Wu, X.D., 2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 8945-8952. 
[10] Mu, C.C., Zhang, T.J., Zhao, Q., Su, H., Wang, S.F., Cao, B., Peng, X.Q., Wu, Q.B., Wu, X.D., 2017. Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 247, 252-259. 
[11] Mu, C.C., Wu, X.D., Zhao, Q., Smoak, J.M., Yang, Y.L., Hu, L.A., Zhong, W., Liu, G.M., Xu, H.Y., Zhang, T.J., 2017. Relict mountain permafrost area (Loess Plateau, China) exhibits high ecosystem respiration rates and accelerating rates in response to warming. Journal of Geophysical Research: Biogeosciences, 122 (10), DOI:10.1002/2017JG004060. 
[12] Mu, C., Zhang, T., Wu, Q., Peng, X., Zhang, P., Yang, Y., Hou, Y., Zhang, X., Cheng, G., 2016. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau. Journal of Limnology, 75, 313-319. 
[13] Mu, C., Zhang, T., Zhang, X., Cao, B., Peng, X., Cao, L., Su, H., 2016. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena, 141, 85-91. 
[14] Mu, C., Zhang, T., Zhang, X., Li, L., Guo, H., Zhao, Q., Cao, L., Wu, Q., Cheng, G., 2016. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 121, 1781-1791. 
[15] Mu, C., Zhang, T., Zhang, X.Y., Cao, B., Peng, X., 2016. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai‐Tibet Plateau. European Journal of Soil Science, 67, 773-781. 
[16] Mu, C.C., Zhang, T.J., Zhao, Q., Guo, H., Zhong, W., Su, H., Wu, Q.B., 2016. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai‐Tibet Plateau. Geophysical Research Letters, 43, 10286-10294. 
[17] Mu, C.C., Zhang, T. J., Wu, Q.B., Peng, X.Q., Cao, B., Zhang, X.K., Cao, B., Cheng, G.D., 2015. Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. The Cryosphere, 9 (2), 479-486. 
[18] Mu, C., Zhang, T., Wu, Q., Cao, B., Zhang, X., Peng, X., Wan, X., Zheng, L., Wang, Q., Cheng, G., 2015. Carbon and nitrogen properties of permafrost over the eboling mountain in the Upper Reach of Heihe River Basin, Northwestern China. Arctic, Antarctic, and Alpine Research, 47, 203-211. 
[19] Mu, C., Zhang, T., Schuster, P.F., Schaefer, K., Wickland, K.P., Repert, D.A., Liu, L., Schaefer, T., Cheng, G., 2014. Carbon and geochemical properties of cryosols on the North Slope of Alaska. Cold Regions Science and Technology, 100, 59-67. 
[20] Mu, C., Zhang, T., Wu, Q., Zhang, X., Cao, B., Wang, Q., Peng, X., Cheng, G., 2014. Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China. Quaternary International, 321, 71-77. 
[21] Peng, X.Q., Mu, C.C.*, 2017. Changes of soil thermal and hydraulic regimes in the Heihe River Basin. Environment Monitoring and Assessment, 189: 483, DOI 10.1007/s10661-017-6195-9.
[22] Mu, C., Feng, Y., Zhai, J., Xiong, B., Zou, T., 2010. Determination of dicarbonyl compounds in ambient fine particles by Liquid Chromatography after 2,4-Dinitrophenylhydrazine Derivative. Chinese Journal of Analytical Chemistry, 38(11), 1573-1577. 
[23] Zhang, P., Wu, Q.B., Mu, C.C., Chen, X.P., 2018. Nucleation Mechanisms of CO2 Hydrate Reflected by Gas Solubility. Scientific Reports, 8, 10441. 
[24] Wu, X.D., Xu, H.Y., Liu, G.M., Zhao, L., Mu, C.C., 2018. Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau. BMC Ecology, 18: 27, DOI: 10.1186/s12898-018-0183-y.
[25] Cao, B., Zhang, T.J., Peng, X.Q., Mu, C.C., Wang, Q.F., Zheng, L., Wang, K., Zhong, XY., 2018. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1029/2018JD028442.
[26] Schuster, P.F., Schaefer, K.M., Aiken, G.R., Antweiler, R.C., Dewild, J.F., Gryziec, J.D., Gusmeroli, A., Hugelius, G., Jafarov, E., Krabbenhoft, D.P., Liu, L., Herman-Mercer, N., Mu, C.C., Zhang, T.J., 2018. Permafrost stores a globally significant amount of mercury. Geophysical Research Letters, 45, 1463–1471. https:// doi.org/10.1002/2017GL075571.
[27] Xu, H.Y., Liu, G.M., Wu, X.D., Smoak, J.M., Mu, C.C., Ma, X.L., Zhang, X.L., Li, H.Q., Hu, GL. 2018. Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Plateau. Ecological Indicators, 85: 585-593.
[28] Peng, X., Zhang, T., Frauenfeld, O.W., Wang, K., Cao, B., Zhong, X., Su, H., Mu, C., 2017. Response of seasonal soil freeze depth to climate change across China. The Cryosphere, 11, 1059-1073. 
[29] Wang, Q., Jin, H., Zhang, T., Cao, B., Peng, X., Wang, K., Xiao, X., Guo, H., Mu, C., Li, L., 2017. Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet plateau. Global and Planetary Change, 156, 1-12.
[30] Wu, X.D., Xu, H.Y., Liu, G.M., Ma, X.L., Mu, C.C., Zhao, L., 2017. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau. Applied Soil Ecology, 120, 81-88.
[31] Zhang, P., Wu, Q.B., Mu, C.C., 2017. Influence of temperature on methane hydrate formation. Scientific Reports, 7, 7904.
[32] Feng, Y., Bian, W., Mu, C., Xu, Y., Wang, F., Qiao, W., Huang, Y., 2014. Establish and verify TSH reference intervals using optimized statistical method by analyzing laboratory-stored data. Journal of Endocrinological Investigation, 37, 277-284.
[33] Wang, Q., Zhang, T., Wu, J., Peng, X., Zhong, X., Mu, C., Cheng, G., 2013. Permafrost characteristics over the Heihe River Basin in western China. Journal of Food, Agriculture & Environment, 11(3&4), 2160-2166.
[34] Feng, Y., Mu, C., Zhai, J., Li, J., Zou, T., 2010. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China. Journal of Hazardous Materials, 183(1), 574-582. 
[35] Feng, Y., Xiong, B., Mu, C., Chen, Y., 2010. Emissions of volatile organic compounds and carbonyl compounds from residential coal combustion in China. Journal of Shanghai University (English Edition), 14(2), 79-82. 
[36] Feng, Y., Mu, C., Fu, Z., Chen, Y., 2011. Determination of airborne dicarbonyls by HPLC analysis using annular Denuder/Filter System coated with 2,4-Dinitrophenylhydrazine. Chinese Journal of Analytical Chemistry, 39(11), 1653-1658. 
[37] Zou, T., Feng, Y., Fu, Z.R., Mu, C.C., 2012. Determination of mono-and dicarbonyls in the atmosphere using gas chromatography/mass spectrometry after PFBHA derivatization. Acta Scientiae Circumstantiae, 32(11), 2718-2724.