姓名:牟翠翠

职称: 教授  博士生导师  硕士生导师 

性别:女

毕业院校:中国科学院寒区旱区环境与工程研究所

学历:研究生

学位:博士

在职信息:在职

所在单位:地球系统科学研究所

入职时间:2014年7月

办公地点:观云楼1504

电子邮箱:mucc@lzu.edu.cn

学习经历

2004年-2008年,青岛科技大学,环境科学,学士。
2008年-2011年,上海大学,环境科学,硕士。
2012年,美国科罗拉多地质调查局(USGS),联合项目培养。
2011年-2014年,中科院寒区旱区环境与工程研究所,博士。

研究方向

冰冻圈环境与碳循环

工作经历

2014年7月-2017年5月:兰州大学资源环境学院,讲师。
2017年12月-2018年12月:美国科罗拉多大学地质系,访问学者。
2017年5月-至今:兰州大学资源环境学院,教授。

主讲课程

《地球系统科学专业英语》
《冰冻圈科学概论》
《气候变化科学概论》

学术兼职

中国冰冻圈科学学会(筹)理事会理事,兼任学会教育工作委员会主任,
政府间气候变化专门委员会(IPCC)第六次评估报告贡献作者,
北极理事会北极监测与评估AMAP-Hg专家组成员,
美国地球物理学会会员,任Earth Science Review,Journal of Geophysical Research等国际著名期刊通讯评议人。

研究成果

       从事冰冻圈与环境研究,侧重于多年冻土碳释放及其对气候变化的响应。近五年来,通过对多年冻土区开展大量的野外采样和监测工作,利用土壤培养实验、野外升温监测和数据统计分析,在多年冻土碳释放对升温的响应机制、热喀斯特加速碳释放的过程与机制、多年冻土退化对河流碳释放的影响三个方面取得系列研究成果。
(1)证实了升温过程中深层碳库的分解潜力和表层类似,提出未来多年冻土碳预估应该考虑深层碳的贡献,阐明了多年冻土退化引起的土壤水热变化是影响高寒生态系统碳收支的重要过程。
(2)阐释了山地多年冻土区热喀斯特加速碳释放的生物地球化学过程,发现热喀斯特发育不仅导致碳源效应,也加强了氮的气候反馈效应,整体增强了多年冻土退化对气候变化的反馈。
(3)提出青藏高原多年冻土区河流碳释放的规律与北极地区不同,揭示了多年冻土退化影响河流碳释放的过程与机制,并从区域尺度上证实了多年冻土退化加速河流碳的释放。

获得荣誉

获2020年教育部“长江学者奖励计划”青年学者。
获2017年“施雅风冰冻圈与环境基金”青年科学家奖。
获2017年国际冰冻圈科学协会(IACS)颁发的“最佳青年报告奖”。
获2016年兰州大学西部环境教育部重点实验室 “西部环境奖-青年教师创新奖”。 
获2015年兰州大学大学生创新创业行动计划“优秀指导老师”荣誉称号。


 

在研项目

1、	国家重点研发计划项目:北极快速变化的机理、影响及其气候效应研究(2019YFA0607003),课题负责人,2019/11-2024/10。
2、	第二次青藏高原综合科学考察研究,任务六专题五:跨境污染物调查与环境安全(2019QZKK0605),子子专题负责人,2019/11-2024/10。
3、	国家自然科学基金委面上项目:青藏高原中部热融湖塘温室气体排放季节变化规律及机理研究(No. 41871050),主持人,2019/01-2022/12。
4、	国家自然科学基金委青年项目:热融滑塌对高寒草甸区土壤有机碳分解及温室气体排放的影响-以俄博岭多年冻土区为例(No. 41601063),主持人,2017/1-2019/12。
5、	中国科学院战略性先导科技专项(A类):祁连山“山水林田湖草”系统优化调配(XDA2010010305),项目骨干,2018/03-2023/03。
6、	冰冻圈科学国家重点实验室开放基金:热融喀斯特对土壤碳和汞释放的影响过程(SKLCS-OP-2018-05),主持人,2018/01-2019/12。
7、	冻土工程国家重点实验室开放基金:青藏高原热融湖塘时空变化特征及其碳排放潜力研究(SKLFSE201705),主持人,2018/01-2020/12。

发表论文

[1] Mu, C.C., Abbott, B.W., Norris, A.J., Mu, M., Fan, C.Y., Chen, X., Jia, L., Yang, R.M., Zhang, T.J., Wang, K., Peng, X.Q., Wu, Q.B., Guggenberger, G., Wu, X.D. 2020. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, https://doi.org/10.1016/j.earscirev.2020.103433.
[2] Mu, C.C., Shang, J.G., Zhang, T.J., Fan, C.Y., Wang, S.F., Peng, X.Q., Zhong, W., Zhang, F., Mu, M., Jia, L. 2020. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides, 17, 1051–1062.
[3] Mu, C.C., Zhang, F., Mu, M., Chen, X., Li, Z.L., Zhang, T.J. 2020. Organic carbon stabilized by iron during slump deformation on the Qinghai-Tibetan Plateau. Catena, 187, 104282.
[4] Mu, C.C., Schuster, P.F., Abbott, B.W., Kang S.K., Guo, J.M., Sun, S.W., Wu, Q.B., Zhang, T.J. 2020. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 708, 135127.
[5] Mu, C.C., Zhang, F., Chen, X., Ge, SM., Mu, M., Jia, L., Wu, QB., Zhang, T.J. 2019. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Research, 161, 54-60.
[6] Mu, C.C., Li, L.L., Wu, X.D., Zhang, F., Jia, L., Zhao, Q., Zhang, T.J., 2018. Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau. Scientific Reports, 8, 4205.
[7] Mu, C.C., Li, L.L., Zhang, F., Li, Y.X., Xiao, X.X., Zhao, Q., Zhang, T.J., 2018. Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 50: 1, e1447192. 
[8] Mu, C.C., Abbott, B.W., Wu, X.D., Zhao, Q., Wang, H.J., Su, H., Wang, S.F., Gao, T.G., Peng, X.Q., Zhang, T.J., 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 9389-9399. 
[9] Mu, C.C., Abbott, B.W., Zhao, Q., Su, H., Wang, S.F., Wu, Q.B., Zhang, T.J., Wu, X.D., 2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 8945-8952. 
[10] Mu, C.C., Zhang, T.J., Zhao, Q., Su, H., Wang, S.F., Cao, B., Peng, X.Q., Wu, Q.B., Wu, X.D., 2017. Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 247, 252-259. 
[11] Mu, C.C., Wu, X.D., Zhao, Q., Smoak, J.M., Yang, Y.L., Hu, L.A., Zhong, W., Liu, G.M., Xu, H.Y., Zhang, T.J., 2017. Relict mountain permafrost area (Loess Plateau, China) exhibits high ecosystem respiration rates and accelerating rates in response to warming. Journal of Geophysical Research: Biogeosciences, 122, 2580-2592.
[12] Mu, C., Zhang, T., Wu, Q., Peng, X., Zhang, P., Yang, Y., Hou, Y., Zhang, X., Cheng, G., 2016. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau. Journal of Limnology, 75, 313-319. 
[13] Mu, C., Zhang, T., Zhang, X., Cao, B., Peng, X., Cao, L., Su, H., 2016. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena, 141, 85-91. 
[14] Mu, C., Zhang, T., Zhang, X., Li, L., Guo, H., Zhao, Q., Cao, L., Wu, Q., Cheng, G., 2016. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 121, 1781-1791. 
[15] Mu, C., Zhang, T., Zhang, X.Y., Cao, B., Peng, X., 2016. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai‐Tibet Plateau. European Journal of Soil Science, 67, 773-781. 
[16] Mu, C.C., Zhang, T.J., Zhao, Q., Guo, H., Zhong, W., Su, H., Wu, Q.B., 2016. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai‐Tibet Plateau. Geophysical Research Letters, 43, 10286-10294. 
[17] Mu, C.C., Zhang, T. J., Wu, Q.B., Peng, X.Q., Cao, B., Zhang, X.K., Cao, B., Cheng, G.D., 2015. Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. The Cryosphere, 9 (2), 479-486. 
[18] Mu, C., Zhang, T., Wu, Q., Cao, B., Zhang, X., Peng, X., Wan, X., Zheng, L., Wang, Q., Cheng, G., 2015. Carbon and nitrogen properties of permafrost over the eboling mountain in the Upper Reach of Heihe River Basin, Northwestern China. Arctic, Antarctic, and Alpine Research, 47, 203-211. 
[19] Mu, C., Zhang, T., Schuster, P.F., Schaefer, K., Wickland, K.P., Repert, D.A., Liu, L., Schaefer, T., Cheng, G., 2014. Carbon and geochemical properties of cryosols on the North Slope of Alaska. Cold Regions Science and Technology, 100, 59-67. 
[20] Mu, C., Zhang, T., Wu, Q., Zhang, X., Cao, B., Wang, Q., Peng, X., Cheng, G., 2014. Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China. Quaternary International, 321, 71-77. 
[21] Peng, X.Q., Mu, C.C.*, 2017. Changes of soil thermal and hydraulic regimes in the Heihe River Basin. Environment Monitoring and Assessment, 189: 483, DOI 10.1007/s10661-017-6195-9.
[22] Mu, C., Feng, Y., Zhai, J., Xiong, B., Zou, T., 2010. Determination of dicarbonyl compounds in ambient fine particles by Liquid Chromatography after 2,4-Dinitrophenylhydrazine Derivative. Chinese Journal of Analytical Chemistry, 38(11), 1573-1577. 
[23] Zhang, P., Wu, Q.B., Mu, C.C., Chen, X.P., 2018. Nucleation Mechanisms of CO2 Hydrate Reflected by Gas Solubility. Scientific Reports, 8, 10441. 
[24] Wu, X.D., Xu, H.Y., Liu, G.M., Zhao, L., Mu, C.C., 2018. Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau. BMC Ecology, 18: 27, DOI: 10.1186/s12898-018-0183-y.
[25] Cao, B., Zhang, T.J., Peng, X.Q., Mu, C.C., Wang, Q.F., Zheng, L., Wang, K., Zhong, XY., 2018. Thermal characteristics and recent changes of permafrost in the upper reaches of the Heihe River Basin, Western China. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1029/2018JD028442.
[26] Schuster, P.F., Schaefer, K.M., Aiken, G.R., Antweiler, R.C., Dewild, J.F., Gryziec, J.D., Gusmeroli, A., Hugelius, G., Jafarov, E., Krabbenhoft, D.P., Liu, L., Herman-Mercer, N., Mu, C.C., Zhang, T.J., 2018. Permafrost stores a globally significant amount of mercury. Geophysical Research Letters, 45, 1463–1471. 
[27] Xu, H.Y., Liu, G.M., Wu, X.D., Smoak, J.M., Mu, C.C., Ma, X.L., Zhang, X.L., Li, H.Q., Hu, GL. 2018. Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Plateau. Ecological Indicators, 85: 585-593.
[28] Peng, X., Zhang, T., Frauenfeld, O.W., Wang, K., Cao, B., Zhong, X., Su, H., Mu, C., 2017. Response of seasonal soil freeze depth to climate change across China. The Cryosphere, 11, 1059-1073. 
[29] Wang, Q., Jin, H., Zhang, T., Cao, B., Peng, X., Wang, K., Xiao, X., Guo, H., Mu, C., Li, L., 2017. Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet plateau. Global and Planetary Change, 156, 1-12.
[30] Wu, X.D., Xu, H.Y., Liu, G.M., Ma, X.L., Mu, C.C., Zhao, L., 2017. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau. Applied Soil Ecology, 120, 81-88.
[31] Zhang, P., Wu, Q.B., Mu, C.C., 2017. Influence of temperature on methane hydrate formation. Scientific Reports, 7, 7904.
[32] Feng, Y., Bian, W., Mu, C., Xu, Y., Wang, F., Qiao, W., Huang, Y., 2014. Establish and verify TSH reference intervals using optimized statistical method by analyzing laboratory-stored data. Journal of Endocrinological Investigation, 37, 277-284.
[33] Wang, Q., Zhang, T., Wu, J., Peng, X., Zhong, X., Mu, C., Cheng, G., 2013. Permafrost characteristics over the Heihe River Basin in western China. Journal of Food, Agriculture & Environment, 11(3&4), 2160-2166.
[34] Feng, Y., Mu, C., Zhai, J., Li, J., Zou, T., 2010. Characteristics and personal exposures of carbonyl compounds in the subway stations and in-subway trains of Shanghai, China. Journal of Hazardous Materials, 183(1), 574-582. 
[35] Feng, Y., Xiong, B., Mu, C., Chen, Y., 2010. Emissions of volatile organic compounds and carbonyl compounds from residential coal combustion in China. Journal of Shanghai University (English Edition), 14(2), 79-82. 
[36] Feng, Y., Mu, C., Fu, Z., Chen, Y., 2011. Determination of airborne dicarbonyls by HPLC analysis using annular Denuder/Filter System coated with 2,4-Dinitrophenylhydrazine. Chinese Journal of Analytical Chemistry, 39(11), 1653-1658. 
[37] Zou, T., Feng, Y., Fu, Z.R., Mu, C.C., 2012. Determination of mono-and dicarbonyls in the atmosphere using gas chromatography/mass spectrometry after PFBHA derivatization. Acta Scientiae Circumstantiae, 32(11), 2718-2724. 

扫一扫
关注公众号