兰州大学资源环境学院

姓名:李卓仑

职称: 教授  博士生导师  硕士生导师 

性别:男

毕业院校:兰州大学

学历:研究生

学位:博士

在职信息:在职

所在单位:地球系统科学研究所

入职时间:2012

办公地点:观云楼1414

电子邮箱:lizhuolunlzl@163.com

学习经历

2007/09—2012/06,兰州大学,资源环境学院,博士

2003/09—2007/06,兰州大学,资源环境学院,学士

研究方向

风沙地貌与环境变化、干旱区地表过程

工作经历

2012/07—2016/05,兰州大学,资源环境学院,讲师

2016/05—2022/01,兰州大学,资源环境学院,副教授

2019/09—2023/01,兰州大学,国际合作与交流处(港澳台事务办公室)副处长 (挂职)

2018/12—至今,兰州大学,资源环境学院,博士生导师

2022/01—至今,兰州大学,资源环境学院,教授

主讲课程

本科生:自然地理学(基地班)、专业外语(基地班)、气候学

研究生:气候变化科学、学术论文写作、地球系统科学、野外科学考察

学术兼职

Nature Communications, Global and Planetary Change,  Catena, International Journal of Climatology, Aeolian Research, The Holocene, Palaeo-3, Theoretical and Applied Climatology, Quaternary International, Journal of Paleolimnology,  《第四纪研究》、《湖泊科学》、《沉积学报》、《冰川冻土》、《中国沙漠》、《盐湖研究》等期刊审稿人。

教育部第五轮学科评估专家(2021)

Frontiers in Earth Science期刊(IF=3.498,JCR Q2分区)专题主编 (2021-至今)

《中国沙漠》首届青年编委(2022-2025)

国家自然科学基金通讯评议人。

教育部学位中心学位论文通讯评审人。

研究成果

  (1)明确了多种代用指标的沙漠环境指示意义:评估了多种代用指标在沙漠地区的气候敏感性;提出了可以有效指示降水、湖泊水位和湖水盐度的代用指标;创建了定量重建湖泊水位连续变化的新方法,解决了沙漠地区湖泊水位连续定量重建的难题。这些工作为重建沙漠腹地环境变化历史提供了具有明确环境指示意义的代用指标,为准确理解湖泊水位变化历史及其与区域和全球环境变化的联系提供了新的途径,提高了环境重建结果的可信度,并为行星风沙科学研究提供了非常有价值的参考。
 (2)发掘了沙漠腹地环境重建新材料—钙质根管:阐明了钙质根管的形成机制;从钙质根管中提取了多种可以指示降水、有效湿度和植被的代用指标;提供了重建沙漠腹地环境要素空间分布格局的新材料,弥补了代用资料空间覆盖度不足的短板。这些工作为沙漠环境变化研究提供了新的重建材料,提高了沙漠地区代用资料的空间覆盖度。
 (3)揭示了沙漠地区对全球变化的区域响应差异:量化了阿拉善沙漠腹地降水和湖泊水位变化幅度;厘清了阿拉善沙漠全新世环境变化模式;框定了亚洲夏季风到达最北的时间和大致位置;该项工作为沙漠腹地古气候多源重建和定量重建提供了新的研究视角和研究方法,为圈层相互作用下的多尺度季风演变与全球气候变化的联系提供了新的证据,深化了对高低纬度气候驱动机制的理解。

获得荣誉

	
教育部,教育部博士学术新人奖,2011.

第四届兰州大学我最喜爱的十大教师提名奖,2015

兰州大学青年教师讲课比赛(理科组第一名)一等奖  2018

兰州大学隆基教学新秀,2018

甘肃省技术标兵,2018

在研项目

1、国家自然科学基金面上项目(42271003):阿拉善沙漠早、中全新世环境定量重建及对夏季风强度的指示 (主持,2023.01~2026.12)

2、国家自然科学基金面上项目(41771211):钙质根管记录的阿拉善沙漠植物生态特性与全新世环境演变(主持,2018.01~2021.12)
 
3、国家自然科学基金青年项目(41301217):阿拉善高原晚第四纪生物壳体种属及年代学意义(主持,2014.01~2016.12) 

4、国家自然科学基金重点项目(41530745): 巴丹吉林沙漠湖泊群水文循环过程与陆气相互作用研究(参与,2016.01~2020.12)

发表论文

(*为通讯作者)

[1] Li, Z.L.*, Yu, X.H., Chen, Q.J., Dong, S.P., Zhang, C., 2022. Quantitative tracing of provenance for modern eolian sands with various grain size fractions in the Ulan Buh Desert, northwestern China. Catena, 217: 106487.

[2] Li, Z.L.*, Li, X., Dong, S.P., Gao, Y.H., 2022. Holocene climate background for lake evolution in the Badain Jaran Desert hinterland of northwestern China revealed by proxies from calcareous root tubes. Quaternary Research, 110: 1-12.(COVER ARTICLE)

[3] Gao, Y.H., Li, Z.L.*, Zhu, R.X., 2022. Holocene millennial-scale precipitation variations in the Asian summer monsoon margin of northwest China and their relation to migrations of monsoon northern boundary via oxygen isotope analysis of calcareous root tubes in deserts. Journal of Geophysical Research: Atmospheres, 127: e2021JD035815.

[4] Dong, S.P., Li, Z.L.*, Li, M., Lu, C.A., Wang, N.A., Ning, K., 2022. Quantitative reconstruction of consecutive paleolake-level fluctuations by the groundwater recharged lake in the desert hinterland: A case study in the Badain Jaran Desert, Northwestern China. Catena, 212: 106051.

[5] Li, Z.L.*, Chen, Q.J.*, Dong, S.P., Zhang, D.Z., Yu, X.H., Zhang, C., 2021. Applicability of rare earth elements in eolian sands from desert as proxies for provenance: A case study in the Badain Jaran Desert, Northwestern China. Catena, 207: 105647.

[6] Chen, Q.J., Li, Z.L.*, Dong, S.P., Yu, Q.J., Zhang, C., Yu, X.H., 2021. Applicability of chemical weathering indices of eolian sands from the deserts in northern China. Catena, 198: 105032.

[7] Li, J.Q, Li, Z.L.*, Dong, S.P., Wei, M.H., Zhou, J.Y., 2021. Spatial and temporal changes in vegetation and desertification (1982–2018) and their responses to climate change in the Ulan Buh Desert, northwest China. Theoretical and Applied Climatology, 143: 1643-1654.

[8] Li, Z.L.*, Yu, X.H., Dong, S.P., Chen, Q.J., Zhang, C., 2020. Microtextural features on quartz grains from eolian sands in a subaqueous sedimentary environment: A case study in the hinterland of the Badain Jaran Desert, Northwest China. Aeolian Research, 43: 100573.

[9] Li, Z.L.*, Wei, M.H., Zhou, J.Y., Tian, X.L., 2020. Arid–humid variations in the summer climate and their influence mechanism in Asian monsoon margin of Northwest China during 1960–2010: A case study in the Alashan Plateau. International Journal of Climatology, 40: 6574-6586.

[10] Li, Z.L.*, Zhu, R.X., Gao, Y.H., Chiu, H.C., Liao, H., 2020. Recrystallization of Holocene calcareous root tubes in the Tengger Desert, Northwest China and its effects on the reliability of paleoenvironmental reconstruction results. Quaternary International, 562: 85-93.

[11] Gao, Y.H., Li, Z.L.*, Zhu, R.X., Wang, N.A., 2020. Quantitative reconstruction of Holocene millennial-scale precipitation in the Asian monsoon margin of northwest China, revealed by phytolith assemblages from calcareous root tubes in the Tengger Desert. Climate Dynamics, 55: 755-770.

[12] Gao, Y.H., Li, Z.L.*, Zhu, R.X., Liao, H., 2020. Stable isotope compositions, sources and paleoenvironmental significance of Holocene calcareous root tubes in the Tengger Desert, Northwest China. Catena, 195: 104846.

[13] Zhang, C., Li, Z.L.*, Chen, Q.J., Dong, S.P., Yu, X.H., Yu, Q.J., 2020. Provenance of eolian sands in the Ulan Buh Desert, northwestern China, revealed by heavy mineral assemblages. Catena, 193: 104624.

[14] Li, Z.L.*, Chen, Q.J., Zhang, C., Yu, Q.J., Dong, S.P., Zhao, L.Q., Wang, N.A., 2019. Environmental significance of the chemical composition of sediments in groundwater- recharged lakes of the Badain Jaran Desert, NW China. Geochemistry, Geophysics, Geosystems, 20: 1026-1040.

[15] Zhu, R.X., Li, Z.L.*, Gao, Y.H., Chen, Q.J., Yu, Q.J., 2019.Variations in chemical element compositions in different types of Holocene calcareous root tubes in the Tengger Desert, NW China, and their palaeoenvironmental significance. Boreas, 48: 800-809.

[16] Gao, Y.H., Li, Z.L.*, Wang, N.A., Li, R.L., 2019. Controlling factors and the paleoenvironmental significance of chemical elements in Holocene calcareous root tubes in the Alashan Desert, Northwest China. Quaternary Research, 91: 149-162.

[17] Li, Z.L.*, He, Y., Chen, Q.J., 2018. Radiocarbon dating of aquatic gastropod shells and its significance in reconstructing Quaternary environmental changes in the Alashan Plateau of northwestern China. Geomorphology, 318: 18-25. 

[18] Li, Z.L.*, Wei, Z.Q., Dong, S.P., Chen, Q.J., 2018. The paleoenvironmental significance of spatial distributions of grain size in groundwater-recharged lakes: A case study in the hinterland of the Badain Jaran Desert, northwest China. Earth Surface Processes and Landforms, 43: 363-372. (COVER ARTICLE)

[19] Chen, Q.J., Li, Z.L.*, Dong, S.P., Wang, N.A., Lai, D.Y.F., Ning, K., 2018. Spatial variations in the chemical composition of eolian sediments in hyper-arid regions: A case study from the Badain Jaran Desert, northwestern China. Journal of Sedimentary Research, 88: 290-300. (COVER ARTICLE)

[20] Dong, S.P., Li, Z.L.*, Chen, Q.J., Wei, Z.Q., 2018. Total organic carbon and its environmental significance for the surface sediments in groundwater recharged lakes from the Badain Jaran Desert, northwest China. Journal of Limnology, 77: 121-129.

[21] Li, Z.L.*, Gao, Y.H., Han, L., 2017. Holocene vegetation signals in the Alashan Desert of northwest China, revealed by lipid molecular proxies from calcareous root tubes. Quaternary Research, 88: 60-70.

[22] Li, Z.L.*, Wang, N.A., Zhang, X.H., Cheng, H.Y., Li, Y., 2016. High precipitation and low evaporation resulted in high lake levels of Juyanze paleolake, northwest China, during 34–26 cal kyr BP. Climate Research, 69: 193-207.

[23] Li, Z.L.*, Wang, N.A., Cheng, H.Y., Li, Y., 2016. Early-middle Holocene hydroclimate changes in the Asian monsoon margin of northwest China inferred from Huahai terminal lake records. Journal of Paleolimnology, 55:289-302.

[24] Li, Z.L.*, Pan, N.Q., He, Y., Zhang, Q., 2016. Evaluating the best evaporation estimate model for free water surface evaporation in hyper arid regions: a case study in the Ejina basin, northwest China. Environmental Earth Sciences, 75: 295.

[25] Xu, M.Q., Li, Z.L.*, 2016. Accumulated temperature changes in desert region and surrounding area during 1960-2013: a case study in the Alxa plateau, Northwest China. Environmental Earth Sciences, 75:1276.

[26] Li, Z.L.*, Wang, N.A., Cheng, H.Y., Ning, K., Zhao, L.Q., Li, R.L., 2015. Formation and environmental significance of Late Quaternary calcareous root tubes in the deserts of the Alashan Plateau, Northwest China. Quaternary International, 372: 167-174.

[27] Li, Z.L.*, Wang, N.A., Li, R.L., Ning, K., Cheng, H.Y., Zhao, L.Q., 2015. Indication of millennial-scale moisture changes by the temporal distribution of Holocene calcareous root tubes in the deserts of the Alashan Plateau, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 496-505.

[28] Li, Z.L.*, Wang, N.A., Li, Y., Zhang, Z.Y., Li, M.N., Dong, C.Y., Huang, R., 2013. Runoff simulations using water and energy balance equations in the lower reaches of the Heihe River, northwest China. Environmental Earth Sciences, 70: 1-12. 

[29] Wang, N.A., Li, Z.L.*, Li., Y., Cheng, H.Y., 2013. Millennial-scale environmental changes in the Asian monsoon margin during the Holocene, implicated by the lake evolution of Huahai Lake in the Hexi Corridor of northwest China. Quaternary International, 313-314: 100-109.

[30] Wang, N.A., Li, Z.L.*, Li, Y., Cheng, H.Y., Huang, R., 2012. Younger Dryas Event recorded by the mirabilite deposition in Huahai Lake, Hexi Corridor, NW China. Quaternary International, 250: 93-99.

[31] Wang, N.A., Li, Z.L.*, Cheng, H.Y., Li, Y., Huang, Y.Z., 2011. High lake levels on Alxa Plateau during the Late Quaternary. Chinese Science Bulletin, 56: 1799-1808.

[32] 李卓仑*,高有红,  李若兰, 王乃昂, 朱瑞霞. 阿拉善沙漠全新世钙质根管形成机制及其古环境指示意义:来自微观形态学证据[J]. 沉积学报, 2018, 38(6): 1131-1138.

[33] 高有红,  李卓仑*,  韩朗,  李若兰. 阿拉善沙漠植物钙质根管:形态特征、分类及其环境指示意义[J]. 沉积学报, 2017,  35(1): 75-84.

[34] 李若兰, 李卓仑*, 宁凯, 王乃昂, 程弘毅, 高有红. 腾格里沙漠植物钙质根管Sr/Ca比值揭示的全新世千年尺度有效湿度变化[J]. 第四纪研究, 2016, 36(2): 379-387.

[35] 刘洁, 李卓仑*, 史添翼, 向怡衡. 近50 a 兰州市的气候周末效应[J]. 兰州大学学报: 自然科学版, 2016, 52(4): 460-465.

[36] 冯滢瑛, 李卓仑. 1957-2007 年东北地区负积温时空演变[J]. 冰川冻土, 2016, 38(6): 1529-1537.

[37] 李卓仑*, 邵孔兰, 宁凯, 王乃昂, 程弘毅. 阿拉善高原沙漠地区植物钙质根管的矿物组成特征[J]. 中国沙漠, 2015, 35(6): 1483-1488

[38] 李卓仑*, 马素辉, 王乃昂, 李孟, 孙佳琦, 魏芳莉. 巴丹吉林沙漠盐湖面积变化对湖泊边缘表层沉积物盐类矿物组合影响[J]. 盐湖研究,2015, 23(4): 8-14.

[39] 马素辉, 李卓仑*, 王乃昂, 宁凯, 李孟. 地下水补给型湖泊表层沉积物矿物组成及其形成机制——以巴丹吉林沙漠湖泊群为例[J]. 湖泊科学, 2015, 27 (4): 727-734.

[40] 李卓仑*, 王乃昂, 李育, 程弘毅, 陈晴. 河西走廊花海古湖泊外源碎屑矿物含量揭示的早、中全新世降水变化. 中国沙漠, 2014, 34(6): 1480-1485

[41] 李卓仑*, 张乃梦, 王乃昂, 程弘毅, 李育. 晚冰期以来河西走廊花海古湖泊演化过程及其对气候变化的响应[J]. 中国沙漠, 2014, 34(2): 342-348

[42] 李卓仑*, 王乃昂, 李育, 程弘毅. 河西走廊花海古湖泊早、中全新世湖水盐度变化及其环境意义[J]. 冰川冻土, 2013, 35(6): 1481-1489.

[43] 李卓仑*, 陈晴, 王乃昂, 李育, 吕行行. 河西走廊花海古湖泊全新世白云石的发现及其环境意义[J]. 湖泊科学, 2013, 25(4): 558-564.

[44] 宁凯, 李卓仑, 王乃昂, 孙建伟, 邵婉婉.巴丹吉林沙漠地表风积砂粒度空间分布及其环境意义[J]. 中国沙漠, 2013, 33(3): 642-648. 

[45] 李卓仑*, 王乃昂, 李育, 来婷婷, 路俊伟. 近50年黑河出山径流对气候变化的响应[J]. 水土保持通报, 2012, 32(2) : 7-11.

[46] 王乃昂, 李卓仑*, 李育, 朱金峰. 河西走廊花海剖面晚冰期以来年代学及沉积特征研究[J]. 沉积学报, 2011, 29(3): 552-560. 

[47] 王乃昂, 李卓仑*, 程弘毅, 李育, 黄银洲. 阿拉善高原晚第四纪高湖面与大湖期的再探讨[J].科学通报, 2011, 56(17): 1367-1377.

[48] 李卓仑*, 王乃昂, 董春雨, 吕晓东, 赵力强. 1928年甘肃旱灾的时空差异及气候背景[J]. 灾害学, 2010, 25(4): 11-15.

[49] 李卓仑*, 董春雨, 杨煜达, 满志敏. 1869年长江中下游地区水灾时空分布及天气特征[J]. 长江流域资源与环境, 2010, 19 (Z1): 166-171.

[50] 李卓仑*, 王乃昂, 轧靖, 刘陶, 智萌.近40 年兰州城市气候季节性变化与城市发展[J].高原气象, 2007, 26(3): 586-592.

[51] 满志敏, 李卓仑, 杨煜达.《王文韶日记》记载的1867-1872 年武汉和长沙地区梅雨特征[J].古地理学报, 2007, 9(4): 431-438.


扫一扫
关注公众号