姓名:高坛光

职称: 副教授  硕士生导师  专业硕士生导师 

性别:男

毕业院校:中国科学院青藏高原研究所

学历:研究生

学位:博士

在职信息:在职

所在单位:兰州大学

入职时间:2016年8月

办公地点:观云楼1001

电子邮箱:gaotg@lzu.edu.cn

学习经历

2002年-2006年:青岛大学旅游与地理科学学院地理系(本科);

2006年-2011年:中国科学院青藏高原研究所(硕博连读);

2009年-2010年:德国耶拿大学水文与地理信息系统系(联合培养博士);

研究方向

冰冻圈科学与气候变化;河流碳循环

工作经历

2016年至今:兰州大学

主讲课程

本科课程:
(1)气候变化科学概论
(2)气候变化的历史、政策与社会经济
(2)寒区水文学

研究生课程:
(1)冰冻圈科学前沿

学术兼职

1、《Journal of Mountain Science》编委

研究成果

研究成果1:气候变化对冰川融化和有机物质输入的影响
气候变化导致了青藏高原及其周边地区冰川加速融化,黑碳和矿物尘埃的沉积显著降低了雪冰反照率,从而加速了冰川的融化。研究表明,黑碳对冰川融化的贡献约为12%至26%。此外,降水中的溶解有机碳和氮的浓度及其光学特性受到气候变化的显著影响,降水中的有机碳和氮的季节变化与降水量和气温密切相关。这些研究结果表明,气候变化通过影响冰川和降水中的有机物质输入,进一步影响了区域碳循环。
研究成果2:高寒河流溶解有机碳和温室气体排放
在青藏高原及其周边地区的河流研究中,发现河流中的溶解有机碳(DOC)和温室气体排放量显著增加。例如,在上游黑河流域的研究表明,河流中的DOC浓度在晚春和夏季达到高峰,主要受冻土融化的影响。此外,研究还表明,河流中的二氧化碳释放量显著,表明内陆水体是重要的碳源,影响区域碳平衡。这些发现为理解河流系统在全球碳循环中的角色提供了新的视角。
研究成果3:冻土滑塌对碳释放和生态系统的影响
研究发现,青藏高原东部的冻土崩塌显著加速,从1969年至2017年,冻土崩塌面积增加了约40倍,且70%的崩塌面积自2004年之后形成。冻土崩塌导致了土壤热状况和水文条件的显著改变,并促进了温室气体的释放。冻土崩塌区域的土壤有机碳(SOC)释放量增加,可能对区域生态系统状态产生重要影响,并可能增强大规模的气候反馈机制。通过无人机、地面测量和卫星图像的数据分析,研究揭示了冻土崩塌的分布和变化趋势,以及其对碳动态的影响。

获得荣誉

1. 中国田径协会马拉松大众一级,中国田径协会,2024年
2. 兰州大学“隆基教学创新奖”,兰州大学,2024年 
3. 甘肃省技术标兵,甘肃省总工会,2024年
4. 第六届甘肃省高校青年教师教学竞赛(理科组)二等奖,甘肃省总工会/甘肃省教育厅,2023年3月
5. 第七届全国水利类专业青年教师讲课竞赛二等奖,中国水利教育协会,2020年9月
6. 第六届兰州大学青年教师教学竞赛(理科组)三等奖,兰州大学,2022年
7. 2020年兰州大学本科毕业论文(设计)优秀指导教师,2020年


在研项目

1.国家自然基金面上项目,42271132,青藏高原冰川区甲烷释放过程及其对冰川退缩的响应,(2023-2026),


发表论文

2024
(1) Gao, T., Zhang, Y., Michael E. (2024). Emerging glacier forelands alter carbon dynamics on the Tibetan Plateau. Journal of Mountain Science, 21(9): 2871-2875. doi:10.1007/s11629-024-9008-y.
(2) Tanguang Gao; Shichang Kang; Tandong Yao; Yanlong Zhao; Xuexue Shang; Yong Nie; Rensheng Chen; Igor Semiletov; Taigang Zhang; Xi Luo; Da Wei; Yulan Zhang ; Carbon dynamics shift in changing cryosphere and hydrosphere of the Third Pole, Earth-Science Reviews, 2024, 250(104717): 104717.
(3) Xuexue Shang; Tanguang Gao*; Tandong Yao; Yulan Zhang; Yanlong Zhao; Yujiao Zhao; Xi Luo; Rensheng Chen; Shichang Kang ; Riverine carbon dioxide release in the headwater region of the Qilian Mountains, northern China, Journal of Hydrology, 2024, 632(130832): 130832.
(4) Wang, Z.; Gao, T.*; Kang, Y.; Guo, W.; Jiang, Z. Glacier Surface Velocity Variations in the West Kunlun Mts. with Sentinel-1A Image Feature-Tracking (2014–2023). Remote Sens. 2024, 16, 63. https://doi.org/10.3390/rs16010063

2023
(1) 赵玉娇,高坛光*,张玉兰等.典型冰冻圈区域河流黑碳研究进展[J].冰川冻土,2023,45(02):327-340.
(1) 尚雪雪,高坛光*,姚檀栋.河流二氧化碳释放研究进展[J].冰川冻土,2023,45(02):395-408.

2021
(1) Gao, T., Kang, S., Chen, R., Wang, X., Yang, J., Luo, X., ... & Zhang, Y. (2021). Characteristics of dissolved organic carbon and nitrogen in precipitation in the northern Tibetan Plateau. Science of The Total Environment, 776, 145911. ()
(2) Gao, T., Wang, X., Wei, D., Wang, T., Liu, S., & Zhang, Y. (2021). Transboundary water scarcity under climate change. Journal of Hydrology, 598, 126453.
(3) Gao, T., Zhang, Y., Kang, S., Abbott, B. W., Wang, X., Zhang, T., ... & Gustafsson, Ö. (2021). Accelerating permafrost collapse on the eastern Tibetan Plateau. Environmental Research Letters, 16(5), 054023.
(4) Zhang, Y., Kang, S., Wei, D., Luo, X., Wang, Z., & Gao, T.* (2021). Sink or source? Methane and carbon dioxide emissions from cryoconite holds, subglacial sediments, and proglacial river runoff during intensive glacier melting on the Tibetan Plateau. Fundamental Research.
(5) 张太刚, 高坛光*, 刁文钦, 张玉兰 (2021). 祁连山区雪冰反照率变化及其对冰川物质平衡的影响, 冰川冻土 43 (1), 145-157
(6) Wang, Z., Zhang, Y., Kang, S., Yang, L., Shi, H., Tripathee, L., & Gao, T. (2021). Research progresses of microplastic pollution in freshwater systems. Science of The Total Environment, 148888.
(7) Zhang, T., Wang, W., Gao, T., & An, B. (2021). Simulation and Assessment of Future Glacial Lake Outburst Floods in the Poiqu River Basin, Central Himalayas. Water, 13(10), 1376.
(8) Zhang, Y., Gao, T., Kang, S., Shangguan, D., & Luo, X. (2021). Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas. Earth-Science Reviews, 103735.
(9) Wei, D., Zhang, Y., Gao, T., Wang, L., & Wang, X. (2021). Reply to Song and Wang: Terrestrial CO2 sink dominates net ecosystem carbon balance of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 118(46).
(10) Zhang, Y., Gao, T., Kang, S., Allen, S., Luo, X., & Allen, D. (2021). Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics. Science of The Total Environment, 758, 143634.
(11) Zhang, T., Wang, W., Gao, T., An, B., & Yao, T. (2022). An integrative method for identifying potentially dangerous glacial lakes in the Himalayas. Science of the Total Environment, 806, 150442.
(12) 张太刚,王伟财,高坛光*等.亚洲高山区冰湖溃决洪水事件回顾[J].冰川冻土,2021,43(06):1673-1692.

2020
(1) Gao T, Kang S, Zhang Y, Sprenger M, Wang F, Du W, et al. Characterization, sources and transport of dissolved organic carbon and nitrogen from a glacier in the Central Asia. Sci Tot Environ. 2020;725:138346.
(2) Gao T, Kang S, Zhang Y, Sprenger M, Wang F, Du W, et al. Data on DOC and N from the Muz taw glacier in Central Asia. Data in Brief. 2020;30:105556.
(3) Gao T, Liu J, Zhang T, Kang S, Liu C, Wang S, et al. Estimating interaction between surface water and groundwater in a permafrost region of the northern Tibetan Plateau using heat tracing method. Sci Cold Arid Reg. 2020;12(2):71-82. 
(4) Zhang Y, Gao T, Kang S, Allen S, Luo X, Allen D. Microplastics in glaciers of the Tibetan Plateau: Evidence for the long-range transport of microplastics. Sci Tot Environ. 2020:143634.
(5) Zhang Y, Gao T, Kang S, Sprenger M, Tao S, Du W, et al. Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. Sci Tot Environ. 2020;740:140056.
(6) Zhang Y, Kang S, Gao T, Sprenger M, Dou T, Han W, et al. Dissolved organic carbon in Alaskan Arctic snow: concentrations, light-absorption properties, and bioavailability. Tellus B: Chemical and Physical Meteorology. 2020;72(1):1-19.
(7) 高坛光.融化的大地[J]. 大自然, 2020(01): 36-39.
(8) 高坛光.多年冻土退化,会是下一个“后天”吗?[J].自然杂志, 2020, 42(05):421-424.

2019
(1) Gao, T., Kang, S., Chen, R., Zhang, T., Zhang, T., Han, C., ... & Zhang, Y. (2019). Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the Northern Tibetan Plateau. Science of the total environment, 686, 370-381.
(2) Zhang, Y., Gao, T., Kang, S., & Sillanpää, M. (2019). Importance of atmospheric transport for microplastics deposited in remote areas. Environmental Pollution, 254, 112953.
(3) Zhang, Y., Kang, S., Gao, T., Schmale, J., Liu, Y., Zhang, W., ... & Sillanpää, M. (2019). Dissolved organic carbon in snow cover of the Chinese Altai Mountains, Central Asia: Concentrations, sources and light-absorption properties. Science of the total environment, 647, 1385-1397.

2018
(1) Gao, T., Zhang, T., Guo, H., Hu, Y., Shang, J., & Zhang, Y. (2018). Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau. PloS one, 13(2), e0192591.

2017
(1) Gao, T.G., Kang, S. C., Zhang, T. J., Yang, D. Q., Shang, J. G., & Qin, X. (2017). Stream temperature dynamics in Nam Co basin, southern Tibetan Plateau. Journal of Mountain Science, 14(12), 2458-2470.

2016
(1) Gao, T., Zhang, T., Cao, L., Kang, S., & Sillanpää, M. (2016). Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Regions Science and Technology, 126, 36-43.
2) Gao, T., Zhang, T., Wan, X., Kang, S., Sillanpää, M., Zheng, Y., & Cao, L. (2016). Influence of microtopography on active layer thaw depths in Qilian Mountain, northeastern Tibetan Plateau. Environmental Earth Sciences, 75(5), 382.

2015
(1) Gao, T., Kang, S., Zhang, T., Zhou, S., Cuo, L., Sillanpää, M., & Zhang, Y. (2015). Summer hydrological characteristics in glacier and non-glacier catchments in the Nam Co Basin, southern Tibetan Plateau. Environmental Earth Sciences, 74(3), 2019-2028.
(2) Tanguang Gao, Shichang Kang, Lan Cuo, et al., 2015. Simulation and analysis of glacier runoff and mass balance in the Nam Co basin, southern Tibetan Plateau. Journal of Glaciology, 61(227): 447-461. 
(3) Tanguang Gao, Shichang Kang, Peter Krause, et al., 2012. A test of J2000 model in a glaciated catchment in central Tibetan Plateau. Environmental Earth Science, 65: 1651-1659.
(4) 高坛光, 张廷军, 康世昌等, 2015. 冰川径流温度研究进展[J]. 水科学进展. 26(6), 886-893. 

出版著作

1.《青藏高原纳木错流域环境与气候》(第五、六章), 2011, 北京: 气象出版社.

2.《寒区水文学讲义》,2020,北京:气象出版社. (https://zhysz.lzu.edu.cn/system/labs/login.jsp)

3.《三极冰雪探秘》系列之《从高极到南极》,2021,北京:科学出版社。

扫一扫
关注公众号