姓名:牟翠翠

职称:

性别:女

毕业院校:中国科学院寒区旱区环境与工程研究所

学历:研究生

学位:博士

在职信息:在职

所在单位:地球系统科学研究所

入职时间:2014年7月

办公地点:观云楼1412

电子邮箱:mucc@lzu.edu.cn

学习经历

2004-2008,青岛科技大学,理学学士
2008-2011,上海大学,理学硕士
2012,美国科罗拉多地质调查局(USGS),联合培养
2011-2014,中国科学院寒区旱区环境与工程研究所,理学博士

研究方向

冰冻圈科学与气候变化

工作经历

2014-至今:兰州大学资源环境学院
曾在美国科罗拉多大学、阿拉斯加大学访学

主讲课程

本科生课程:《冰冻圈科学概论》《地球科学概论》
研究生课程:《气候变化科学概论》《冰冻圈科学前沿进展》

学术兼职

甘肃省祁连山冻土与生态环境野外科学观测研究站站长
兰州大学冰冻圈研究中心主任
政府间气候变化专门委员会(IPCC)第六次评估报告贡献作者
北极理事会的《北极监测与评估工作组报告》(AMAP)贡献作者
美国化学学会《Journal of Environmental Quality》副主编
《Frontiers in Environmental Science》《Applied Geochemistry》客座编辑
《中国大百科全书》第三版冰冻圈科学专题分支副主编
《冰川冻土》和《寒旱区科学》编委
中国冰冻圈科学学会理事会理事、教育工作委员会主任
中国地理学会冻土与寒区工程专业委员会副主任

研究成果

主要从事多年冻土碳循环研究,在逐步升温碳分解机理、速变融化碳释放调控、陆-水系统碳动态等方面取得了一系列研究成果。在国内外期刊上发表论文100余篇,其中SCI/SSCI收录80余篇,包括第一/通讯作者在Nat Commun、Glob Change Biol、Earth-Sci Rev、ISPRS J Photogramm Remote Sens、Global Biogeochem Cycles、Earths Future、Geophys Res Lett等重要期刊上发表论文。

获得荣誉

2020年度教育部“长江学者奖励计划”青年学者
2021年第十届甘肃青年科技奖
2021年第十三届青藏高原青年科技奖
2021年甘肃省领军人才(第二层次)
2023年甘肃省巾帼建功标兵荣誉称号
2022年兰州大学“国华青年英才奖”
2017年国际冰冻圈科学协会(IACS)颁发的“最佳青年报告奖”
2017年“施雅风冰冻圈与环境基金”青年科学家奖

在研项目

1. 国家重点研发计划青年科学家项目:青藏高原多年冻土退化对泥炭地甲烷排放的影响(2024YFF0810900),项目负责人,2024/12-2027/11
2. 国家自然科学基金委面上项目:青藏高原季节性热融湖塘甲烷排放及微生物作用研究(42371132),项目负责人,2024/01-2027/12
3. 甘肃省基础研究创新群体项目:青藏高原典型多年冻土区土壤碳库对全球变化的响应及机理(23JRRA1171),项目负责人,2023/07-2026/06
4. 国家重点研发计划项目:北极快速变化的机理、影响及其气候效应研究(2019YFA0607003),课题负责人,2019/11-2024/10
5. 国家自然科学基金委面上项目:青藏高原中部热融湖塘温室气体排放季节变化规律及机理研究(41871050),项目负责人,2019/01-2022/12
6. 第二次青藏高原综合科学考察研究,任务六专题五:跨境污染物调查与环境安全(2019QZKK0605),子子专题负责人,2019/11-2022/10

发表论文

[1] Mu, C. C.*, et al. 2025. Methane emissions from thermokarst lakes must emphasize the ice-melting impact on the Tibetan Plateau. Nature Communications, 16(1): 2404.
[2] Mu, M., Mu, C. C.*, et al. 2025. Thermokarst lake drainage halves the temperature sensitivity of CH4 release on the Qinghai-Tibet Plateau. Nature Communications, 16(1): 1992.
[3] Fan, C. Y., Mu, C. C.*, Liu, L.*, et al. 2025. Time-Series models for ground subsidence and heave over permafrost in InSAR Processing: A comprehensive assessment and new improvement. ISPRS Journal of Photogrammetry and Remote Sensing, 222:167-185.
[4] Mu, C.C.*, et al. 2024. Impacts of increasing land-ocean interactions on carbon cycles in the Arctic. Earth Critical Zone, 1, 100010.
[5] Peng, X.Q., ..., Mu, C.C.*, et al. 2024. The thermal effect of snow cover on ground surface temperature in the Northern Hemisphere. Environmental Research Letters, 19, 044015.
[6] Xia, Z.X., Liu, L.*, Mu, C.C.*, et al. 2024. Widespread and Rapid Activities of Retrogressive Thaw Slumps on the Qinghai-Tibet Plateau From 2016 to 2022. Geophysical Research Letters, 51, e2024GL109616.
[7] Mu, M., Mu, C.C.*, et al. 2024. Decline of CO2 Release During the Evolution of the Thaw Slump on the Northern Qinghai‐Tibet Plateau. Journal of Geophysical Research: Biogeosciences, 129: e2024JG008162.
[8] Mu, M., Mu, C.C.*, et al. 2024. Topographic Drivers of Permafrost Organic Carbon Accumulation on the Northern Qinghai–Tibet Plateau. Permafrost and Periglacial Processes, 35: 373-383.
[9] Mu, C.C.*, Mo, X.X, et al. 2023. Ecosystem CO2 exchange and its economic implications in northern permafrost regions in the 21st century. Global Biogeochemical Cycles, 37, e2023GB007750.
[10] Zhao, W.Y., Mu, C.C.*, et al. 2023. Spatial and temporal variability in snow density across the Northern Hemisphere. Catena, 232, 107445. 
[11] Peng, X.Q., ..., Mu, C.C.*, et al. 2023. Active layer thickness and permafrost area projections for the 21st century. Earth's Future, 11: e2023EF003573.
[12] Zhang, G.F., Mu, C.C.*, et al. 2023. Elevation dependency of future degradation of permafrost over the Qinghai-Tibet Plateau. Environmental Research Letters, 18, 075005.
[13] Mu, M., Mu, C.C.*, et al. 2023. Carbon loss and emissions within a permafrost collapse chronosequence. Catena, 231, 107291.
[14] Mu, C.C., Mu, M., et al. 2023. High carbon emissions from thermokarst lakes and their determinants in the Tibet Plateau. Global Change Biology, 29(10), 2732-2745.
[15] Mu, M, Mu, C.C.*, et al. 2023. Thermokarst lake changes along the Qinghai-Tibet Highway during 1991–2020. Geomorphology, 441: 108895.
[16] Peng, X.Q., ..., Mu, C.C *. 2022. An integrated index of cryospheric change in the Northern Hemisphere. Global and Planetary Change, 218, 103984.
[17] Peng, X.Q., Zhang, T.J.*, ..., Mu, C.C.* 2021. A Holistic assessment of 1979–2016 global cryospheric extent. Earth's Future, 9, e2020EF001969.
[18] Li, Z.L., Mu, C.C.*, et al. 2021. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002-2017. Advances in Climate Change Research, 12, 475-481.
[19] Mu, C.C., et al. 2020. The status and stability of permafrost carbon on the Tibetan Plateau. Earth-Science Reviews, 211, 103433.
[20] Mu, C.C.*, et al. 2020. Acceleration of thaw slump during 1997–2017 in the Qilian Mountains of the northern Qinghai-Tibetan plateau. Landslides, 17, 1051–1062.
[21] Mu, C.C.*, et al. 2020. Organic carbon stabilized by iron during slump deformation on the Qinghai-Tibetan Plateau. Catena, 187, 104282.
[22] Mu, C.C.*, et al. 2020. Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 708, 135127.
[23] Mu, C.C.*, et al. 2019. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Research, 161, 54-60.
[24] Mu, C.C., et al. 2018. Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau. Scientific Reports, 8, 4205.
[25] Mu, C.C., et al. 2018. Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 50: 1, e1447192. 
[26] Mu, C.C., et al. 2017. Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 9389-9399. 
[27] Mu, C.C., et al. 2017. Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau. Geophysical Research Letters, 44, 8945-8952. 
[28] Mu, C.C., et al. 2017. Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 247, 252-259. 
[29] Mu, C.C., et al. 2017. Relict mountain permafrost area (Loess Plateau, China) exhibits high ecosystem respiration rates and accelerating rates in response to warming. Journal of Geophysical Research: Biogeosciences, 122, 2580-2592.
[30] Mu, C.C., et al. 2016. Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau. Journal of Limnology, 75, 313-319.
[31] Mu, C.C., et al. 2016. Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena, 141, 85-91. 
[32] Mu, C.C., et al. 2016. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 121, 1781-1791. 
[33] Mu, C.C., et al. 2016. Sensitivity of soil organic matter decomposition to temperature at different depths in permafrost regions on the northern Qinghai‐Tibet Plateau. European Journal of Soil Science, 67, 773-781.
[34] Mu, C.C., et al. 2016. Soil organic carbon stabilization by iron in permafrost regions of the Qinghai‐Tibet Plateau. Geophysical Research Letters, 43, 10286-10294. 
[35] Mu, C.C., et al. 2015. Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. The Cryosphere, 9 (2), 479-486.
[36] Mu, C.C., et al. 2015. Carbon and nitrogen properties of permafrost over the eboling mountain in the Upper Reach of Heihe River Basin, Northwestern China. Arctic, Antarctic, and Alpine Research, 47, 203-211.
[37] Mu, C.C., et al. 2014. Carbon and geochemical properties of cryosols on the North Slope of Alaska. Cold Regions Science and Technology, 100, 59-67. 
[38] Mu, C.C., et al. 2014. Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China. Quaternary International, 321, 71-77.

出版著作

《冰冻圈化学》、《青藏高原东北部黄河流域水碳过程与人类活动》、《冻土环境生态学》